The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  1  1  X  0  1  1  1  X  1  1  1  1  1  6  1  1  1  1  1  1  6
 0  X  0  0  0 2X X+6 2X+6  X 2X+6  6  X 2X X+6 2X+6 X+6  0  3 X+3 X+6  0  X 2X 2X  6 2X+3 2X+6  6  6  X 2X X+6  0 X+6 2X+6 2X  X  X  6  6  0 2X+3 2X+3 X+6 2X  6  0  X  6 X+6 2X 2X+3  6 2X+3 2X+3 2X+3  0 X+6  X  3 2X+3 X+6  X X+6 2X  6  3 X+3  0 2X+3 X+6 2X X+6  X 2X  6  3 X+6  X  3  3 2X  0  X
 0  0  X  0  3  6  3  6  0  0 2X  X 2X+3 2X+3 X+6 2X+3 X+6 X+6 2X  X 2X+3 X+6 X+6 2X+6 2X+6 2X+6  X  6 X+6 X+3 2X+3 X+6 2X  3  3  X  X  3  0 2X  X 2X+3  3 2X+6  3 2X 2X+6 2X  3  0 2X+3  X  6 2X  3 X+3 X+6 X+6  3  6  X 2X 2X 2X  3  3  X  0  X 2X+3  X  6 X+6  0 2X+6 2X+3  X X+3  3  3 X+3 X+6 2X X+3
 0  0  0  X 2X+6  0 2X X+3  X 2X  3  6  0  6  3  X X+3 2X 2X+6 2X+6 X+3 X+3 2X 2X+3 2X+6 X+3 X+6 2X+3 X+6  0 2X 2X+3  X  X 2X 2X+3 X+3  3  X  X 2X+6  0 2X  0  3 2X  6  X 2X+6 2X  3  3 X+6 X+3  3 2X+3  0  3  6  3 X+6 2X  6  0 2X+3 2X+6 2X+3 X+3 2X+3 2X X+6 X+6 X+3 2X+6  6 2X X+6  3  0 2X+3 2X+6  3  3 2X+6

generates a code of length 84 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 158.

Homogenous weight enumerator: w(x)=1x^0+408x^158+276x^159+18x^160+768x^161+386x^162+90x^163+1518x^164+890x^165+1404x^166+3204x^167+2106x^168+2682x^169+2928x^170+926x^171+180x^172+510x^173+236x^174+300x^176+120x^177+246x^179+90x^180+156x^182+44x^183+120x^185+18x^186+36x^188+8x^189+12x^191+2x^234

The gray image is a code over GF(3) with n=756, k=9 and d=474.
This code was found by Heurico 1.16 in 5.51 seconds.